Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Acta cir. bras ; 35(1): e202000107, 2020. tab, graf
Article in English | LILACS | ID: biblio-1088521

ABSTRACT

Abstract Purpose Patients with diabetes are vulnerable to myocardial I/R (ischaemia/reperfusion) injury, but are not responsive to IPO (ischaemic post-conditioning). We hypothesized that decreased cardiac Adiponectin (APN) is responsible for the loss of diabetic heart sensitivity to IPO cardioprotecton. Methods Diabetic rats were subjected to I/R injury (30 min of LAD occlusion followed by 120 min of reperfusion). Myocardial infarct area was determined by TTC staining. Cardiac function was monitored by a microcatheter. ANP, 15-F2t-isoprostane, nitrotyrosine and MDA were measured by assay kits. Levels of p-Akt, total-Akt and GAPDH were determined by Western Blot. Results Diabetic rats subjected to myocardial IR exhibited severe myocardial infarction and oxidative stress injury, lower APN in the plasma and cardiac p-Akt expression ( P <0.05). IPO significantly attenuated myocardial injury and up-regulated plasma APN content and cardiac p-Akt expression in non-diabetic rats but not in diabetic rats. Linear correlation analysis showed that the expression of adiponectin was positively correlated with p-Akt and negatively correlated with myocardial infarction area ( P <0.01). Conclusion Protective effect of IPO was tightly correlated with the expression of adiponectin, exacerbation of I/R injury and ineffectiveness of IPO was partially due to the decline of adiponectin and inactivation of Akt in diabetes mellitus.


Subject(s)
Animals , Male , Rats , Myocardial Reperfusion Injury/prevention & control , Diabetes Mellitus, Experimental/metabolism , Adiponectin/therapeutic use , Ischemic Postconditioning/methods , Blood Glucose/analysis , Myocardial Reperfusion Injury/metabolism , Rats, Sprague-Dawley , Disease Models, Animal
2.
Rev. bras. anestesiol ; 69(2): 160-167, Mar.-Apr. 2019. graf
Article in English | LILACS | ID: biblio-1003397

ABSTRACT

Abstract Background and objectives: Dexmedetomidine has demonstrated protective effects against lung injury in vitro. Here, we investigated whether dexmedetomidine preconditioning protected against lung injury in hemorrhagic shock rats. Methods: Male Sprague-Dawley rats were randomly divided into four groups (n = 8): control group, hemorrhagic shock group, 5 ug.kg-1 dexmedetomidine (DEX1) group, and 10 ug.kg-1 dexmedetomidine (DEX2) group. Saline or dexmedetomidine were administered over 20 min. 30 min after injection, hemorrhage was initiated in the hemorrhagic shock, DEX1 and DEX2 group. Four hours after resuscitation, protein and cellular content in bronchoalveolar lavage fluid, and the lung histopathology were measured. The malondialdehyde, superoxide dismutase, Bcl-2, Bax and caspase-3 were also tested in the lung tissue. Results: Compare with hemorrhagic shock group, 5 ug.kg-1 dexmedetomidine pretreatment reduced the apoptosis (2.25 ± 0.24 vs. 4.12 ± 0.42%, p < 0.05), histological score (1.06 ± 0.12 vs. 1.68 ± 0.15, p < 0.05) and protein (1.92 ± 0.38 vs. 3.95 ± 0.42 mg.mL-1, p < 0.05) and WBC (0.42 ± 0.11 vs. 0.92 ± 0.13 × 109/L, p < 0.05) in bronchoalveolar lavage fluid. Which is correlated with increased superoxide dismutase activity (8.35 ± 0.68 vs. 4.73 ± 0.44 U.mg-1 protein, p < 0.05) and decreased malondialdehyde (2.18 ± 0.19 vs. 3.28 ± 0.27 nmoL.mg-1 protein, p < 0.05). Dexmedetomidine preconditioning also increased the Bcl-2 level (0.55 ± 0.04 vs. 0.34 ± 0.05, p < 0.05) and decreased the level of Bax (0.46 ± 0.03 vs. 0.68 ± 0.04, p < 0.05), caspase-3 (0.49 ± 0.03 vs. 0.69 ± 0.04, p < 0.05). However, we did not observe any difference between the DEX1 and DEX2 groups for these (p > 0.05). Conclusion: Dexmedetomidine preconditioning has a protective effect against lung injury caused by hemorrhagic shock in rats. The potential mechanisms involved are the inhibition of cell death and improvement of antioxidation. But did not show a dose-dependent effect.


Resumo Justificativa e objetivos: Dexmedetomidina demonstrou efeitos protetores contra a lesão pulmonar in vitro. Neste estudo, investigamos se o pré-condicionamento com dexmedetomidina protege contra a lesão pulmonar em ratos com choque hemorrágico. Métodos: Ratos machos, Sprague-Dawley, foram aleatoriamente divididos em quatro grupos (n = 8): grupo controle, grupo com choque hemorrágico, grupo com 5 µg.kg-1 de dexmedetomidina (DEX1) e grupo com 10 µg.kg-1 de dexmedetomidina (DEX2). Solução salina ou dexmedetomidina foi administrada durante 20 minutos. Trinta minutos após a injeção, a hemorragia foi iniciada nos grupos choque hemorrágico, DEX1 e DEX2. Quatro horas após a ressuscitação, a proteína e o conteúdo celular no lavado broncoalveolar e a histopatologia pulmonar foram medidos. Malondialdeído, superóxido dismutase, Bcl-2, Bax e caspase-3 também foram testados no tecido pulmonar. Resultados: Na comparação com o grupo choque hemorrágico, o pré-tratamento com 5 ug.kg-1 de dexmedetomidina reduziu a apoptose (2,25 ± 0,24 vs. 4,12 ± 0,42%, p < 0,05), escore histológico (1,06 ± 0,12 vs. 1,68 ± 0,15, p < 0,05) e proteína (1,92 ± 0,38 vs. 3,95 ± 0,42 mg.mL-1, p < 0,05) e leucócitos (0,42 ± 0,11 vs. 0,92 ± 0,13 × 109/L, p < 0,05) no lavado broncoalveolar; o que está correlacionado com o aumento da atividade da superóxido dismutase (8,35 ± 0,68 vs. 4,73 ± 0,44 U.mg-1 de proteína, p < 0,05) e diminuição do malondialdeído (2,18 ± 0,19 vs. 3,28 ± 0,27 nmoL.mg-1 de proteína, p < 0,05). O pré-condicionamento com dexmedetomidina também aumentou o nível de Bcl-2 (0,55 ± 0,04 vs. 0,34 ± 0,05, p < 0,05) e diminuiu o nível de Bax (0,46 ± 0,03 vs. 0,68 ± 0,04, p < 0,05), caspase-3 (0,49 ± 0,03 vs. 0,69 ± 0,04, p < 0,05). No entanto, não houve diferença entre os grupos DEX1 e DEX2 para essas proteínas (p > 0,05). Conclusão: O pré-condicionamento com dexmedetomidina tem um efeito protetor contra a lesão pulmonar causada por choque hemorrágico em ratos. Os potenciais mecanismos envolvidos são a inibição da morte celular e a melhora da antioxidação. Porém, não mostrou um efeito dose-dependente.


Subject(s)
Animals , Male , Rats , Shock, Hemorrhagic/drug therapy , Protective Agents/administration & dosage , Dexmedetomidine/administration & dosage , Lung Injury/prevention & control , Rats , Shock, Hemorrhagic/complications , Bronchoalveolar Lavage Fluid , Rats, Sprague-Dawley , Apoptosis/drug effects , Protective Agents/pharmacology , Dexmedetomidine/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Lung Injury/etiology
3.
Acta cir. bras ; 34(1): e20190010000005, 2019. graf
Article in English | LILACS | ID: biblio-983682

ABSTRACT

Abstract Purpose: To investigate the role of PI3k/Akt signal pathway in the protective effects of propofol on intestinal and lung injury induced by intestinal ischemia/reperfusion(I/R). Methods: Male Sprague-Dawley rats were subjected to 45 min of ischemia by occluding the superior mesenteric artery and to 2h of reperfusion to establish the model of I/R. Twenty four rats were randomly divided into four groups: Sham, intestinal I/R (II/R), propofol (P), wortmannin (W). In groups P, W, propofol was injected intravenously and continuously at the onset of reperfusion via infusion pump. PI3K inhibitor (wortmannin) was administered intravenously in group W 25 min before ischemia. Intestinal tissues and lung tissues were obtained for determination of histologic injury, wet/dry weight ratio, malondialdehyde (MDA) levels, superoxide dismutase (SOD) and myeloperoxidase (MPO) activities. Meanwhile, the expressions of caspase-3 and phosphorylated Akt (p-Akt) in intestines and lungs were detected by western blot. Results: Propofol treatment alleviated intestinal and lung morphological changes which were observed in II/R group,Moreover, wet/dry weight ratio, the MDA level, MPO activity and expression of caspase-3 were significantly decreased whereas the SOD activity and p-Akt expression were significantly increased. Notably, the protections were significantly reversed by pretreatment of wortmannin. Conclusion: PI3K/Akt pathway activation play a critical role in the protective effects of propofol on intestinal and lung injury induced by ischemia/reperfusion.


Subject(s)
Animals , Male , Rats , Reperfusion Injury/drug therapy , Propofol/pharmacology , Anesthetics, Intravenous/pharmacology , Phosphatidylinositol 3-Kinases/physiology , Proto-Oncogene Proteins c-akt/physiology , Lung Injury/prevention & control , Mesenteric Ischemia/drug therapy , Reperfusion Injury/metabolism , Signal Transduction/physiology , Rats, Sprague-Dawley , Disease Models, Animal , Mesenteric Ischemia/metabolism
4.
Rev. bras. anestesiol ; 67(6): 600-606, Nov.-Dec. 2017. graf
Article in English | LILACS | ID: biblio-897789

ABSTRACT

Abstract Background and objectives Dexmedetomidine (DEX) has demonstrated the preconditioning effect and shown protective effects against organize injury. In this study, using A549 (human alveolar epithelial cell) cell lines, we investigated whether DEX preconditioning protected against acute lung injury (ALI) in vitro. Methods A549 were randomly divided into four groups (n = 5): control group, DEX group, lipopolysaccharides (LPS) group, and D-LPS (DEX + LPS) group. Phosphate buffer saline (PBS) or DEX were administered. After 2 h preconditioning, the medium was refreshed and the cells were challenged with LPS for 24 h on the LPS and D-LPS group. Then the malondialdehyde (MDA), superoxide dismutase (SOD), Bcl-2, Bax, caspase-3 and the cytochrome c in the A549 were tested. The apoptosis was also evaluated in the cells. Results Compare with LPS group, DEX preconditioning reduced the apoptosis (26.43% ± 1.05% vs. 33.58% ± 1.16%, p < 0.05) in the A549, which is correlated with decreased MDA (12.84 ± 1.05 vs. 19.16 ± 1.89 nmoL.mg-1 protein, p < 0.05) and increased SOD activity (30.28 ± 2.38 vs. 20.86 ± 2.19 U.mg-1 protein, p < 0.05). DEX preconditioning also increased the Bcl-2 level (0.53 ± 0.03 vs. 0.32 ± 0.04, p < 0.05) and decreased the level of Bax (0.49 ± 0.04 vs. 0.65 ± 0.04, p < 0.05), caspase-3 (0.54 ± 0.04 vs. 0.76 ± 0.04, p < 0.05) and cytochrome c. Conclusion DEX preconditioning has a protective effect against ALI in vitro. The potential mechanisms involved are the inhibition of cell death and improvement of antioxidation.


Resumo Justificativa e objetivos Dexmedetomidina (DEX) demonstrou ter efeito pré-condicionante e também efeitos protetores contra lesão organizada. Neste estudo, com células A549 (células epiteliais alveolares humanas), investigamos se o pré-condicionamento com DEX proporcionaria proteção contra lesão pulmonar aguda (LPA) in vitro. Métodos Células A549 foram aleatoriamente distribuídas em quatro grupos (n = 5): controle, DEX, lipopolissacarídeos (LPS) e D-LPS (DEX + LPS). Administramos solução de PBS (tampão fosfato-alcalino) ou DEX. Após 2 h de pré-condicionamento, o meio foi renovado e as células desafiadas com LPS por 24 h nos grupos LPS e D-LPS. Em seguida, malondialdeído (MDA), superóxido dismutase (SOD), Bcl-2, Bax, caspase-3 e em A549 foram testados. Apoptose também foi avaliada nas células. Resultados Em comparação com o grupo LPS, o pré-condicionamento com DEX reduziu a apoptose (26,43% ± 1,05% vs. 33,58% ± 1,16%, p < 0,05) em células A549, o que está correlacionado com a diminuição de MDA (12,84 ± 1,05 vs. 19,16 ± 1,89 nmol.mg-1 de proteína, p < 0,05) e aumento da atividade de SOD (30,28 ± 2,38 vs. 20,86 ± 2,19 U.mg-1 de proteína, p < 0,05). O pré-condicionamento com DEX também aumentou o nível de Bcl-2 (0,53 ± 0,03 vs. 0,32 ± 0,04, p < 0,05) e diminuiu o nível de Bax (0,49 ± 0,04 vs. 0,65 ± 0,04, p < 0,05), caspase-3 (0,54 ± 0,04 vs. 0,76 ± 0,04, p < 0,05) e citocromo c. Conclusão O pré-condicionamento com DEX tem efeito protetor contra LPA in vitro. Os potenciais mecanismos envolvidos são inibição da morte celular e melhoria da antioxidação.


Subject(s)
Humans , Lipopolysaccharides/adverse effects , Dexmedetomidine/pharmacology , Alveolar Epithelial Cells/drug effects , Hypnotics and Sedatives/pharmacology , Random Allocation , Cells, Cultured , Lipopolysaccharides/antagonists & inhibitors
5.
Acta cir. bras ; 32(5): 376-387, May 2017. tab, graf
Article in English | LILACS | ID: biblio-837712

ABSTRACT

Abstract Purpose: To investigate whether modulating GSK-3β could attenuate myocardial ischemia reperfusion injury (MIRI) induced acute lung injury (ALI) and analyze the underlying mechanism. Methods: Male SD rats were subjected to MIRI with or without myocardial ischemic post-conditioning in the presence or absence of GSK-3β inhibitor. GSK-3β inhibitor was injected peritoneally 10min before MIRI. Lung W/D weight ratio, MPO, PMNs, histopathological changes, TUNEL, Bax, Bcl-2, IL-6, IL-8, IL-10, GSK-3β, and caspase-3 were evaluated in the lung tissues of all rats. Results: After MIRI, lung injury was significantly increased manifested as significant morphological changes and increased leukocytes in the interstitial capillaries, Lung W/D ratio, MPO, and PMN in BALF, which was associated with enhanced inflammation evidenced by increased expressions of IL-6, IL-8 and reduced expression of IL-10. MIRI significantly increased cell apoptosis in the lung as increased levels of apoptotosis, Bax, cleaved caspase-3, and reduced expression of Bcl-2 was observed, which was concomitant with reduced p-GSK-3β. All these changes were reversed/prevented by ischemic post-conditioning, while these beneficial effects of ischemic post-conditioning were abolished by GSK-3β inhibition. Conclusion: Myocardial ischemia reperfusion injury induces acute lung injury by induction of inflammation and cell apoptosis. Ischemic post-conditioning protects the lung from ALI following MIRI by increasing p-GSK-3β.


Subject(s)
Animals , Male , Myocardial Reperfusion Injury/prevention & control , Protective Agents/metabolism , Acute Lung Injury/prevention & control , Ischemic Postconditioning/methods , Glycogen Synthase Kinase 3 beta/metabolism , Random Allocation , Down-Regulation , Interleukins/metabolism , Rats, Sprague-Dawley , Apoptosis/drug effects , Peroxidase/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Protective Agents/pharmacology , In Situ Nick-End Labeling , Models, Animal , Enzyme Activation , bcl-2-Associated X Protein/metabolism , Caspase 3/metabolism , Acute Lung Injury/enzymology , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Glycogen Synthase Kinase 3 beta/pharmacology , Inflammation/metabolism , Myocardial Infarction/pathology , Neutrophils/enzymology
6.
Acta cir. bras ; 32(1): 28-37, Jan. 2017. graf
Article in English | LILACS | ID: biblio-837666

ABSTRACT

Abstract Purpose: To investigate whether modulating NRG1 could attenuate diabetic neuropathic pain and analyze the underlying mechanism. Methods: Male SD rats were randomly divided into control group, diabetic group, NRG1 intervention group. After STZ-induced 2 weeks, NRG1 intervention daily for consecutive 7 days. 4 weeks after NRG1 intervention, both the mechanical withdrawal threshold and the morphological changes of the dorsal root ganglion and sural nerve were observed. Meanwhile, the expression of NGF, IL-1β, TNF-α in spinal cord were determined. Results: Compared with the diabetic group, NRG1 treatment improved the mechanical withdrawal threshold in diabetic rats, pathological changes of dorsal root ganglion and sural nerve were alleviated by NRG1 treatment with electron microscopy imagine. Moreover, compared with the control group, the expression of NGF was significantly decreased and the production of IL-1β, TNF-α were markedly induced in diabetic group. Furthermore, NRG1 treatment could normalized the above effect as compared to diabetic group. Conclusion: NRG1 exerted positive effects on the behavioral and pathological changes of rats with STZ-induced diabetic neuropathic pain, the underlying mechanism might be related to the promotion of NGF excretion and the inhibition of inflammatory cytokines excretion.


Subject(s)
Animals , Male , Rats , Neuregulin-1/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetic Neuropathies/drug therapy , Neuralgia/drug therapy , Spinal Cord/metabolism , Random Allocation , Tumor Necrosis Factor-alpha/metabolism , Rats, Sprague-Dawley , Streptozocin , Nerve Growth Factor/metabolism , Interleukin-1beta/metabolism , Neuralgia/etiology
7.
Chinese Journal of Traumatology ; (6): 269-274, 2007.
Article in English | WPRIM | ID: wpr-236768

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the effect of radix paeoniae rubra (RPR) on expression of p38 mitogen activated protein kinase (MAPK)/iNOS/HO-1 in rats with lipopolysaccharide-induced acute lung injury and explore the molecular mechanism.</p><p><b>METHODS</b>Forty healthy male Wistar rats, weighing 200-250 g, aged 6-8 weeks (mean equal to 7 weeks), provided by the Experimental Center, Medical College, Wuhan University, Wuhan, China, were employed in this study. Under anesthesia with 7% chloraldurat (5 ml/kg body weight) through intraperitoneal injection, the trachea of the rat was exposed and an arterial puncture needle pricked into the trachea via cricothyroid membrane. Then they were randomly divided into five groups: 8 rats receiving 1 ml normal saline through the puncture needle (Group A), 8 receiving 1 ml lipopolysaccharide (LPS, 2.5 mg/kg, Group B), 8 receiving LPS and RPR (30 mg/kg, pumped through the femoral vein for 2 hours, Group C), 8 receiving RPR 2 hours before dripping LPS (Group D), and 8 receiving hemin (75 micromol/L through intraperitoneal injection) 18 hours before dripping LPS (Group E). After 6 hours of LPS dripping, blood samples were obtained through the carotid artery to perform blood gas analysis, then all the rats were exsanguinated to death and specimens of lung tissues were obtained. The pathomorphological changes of the lung tissues were observed. The expression of p38 MAPK/iNOS/HO-1, the neutrophil ratio, protein content in alveolar irrigating solution and malonaldehyde (MDA) content in the lung tissues were also detected.</p><p><b>RESULTS</b>Compared with Group A, the expression of p38 MAPK, iNOS and HO-1 markedly increased in Groups B, C, D, and E (P < 0.01). But in Groups C, D and E the expression of p38 MAPK and iNOS were significantly lower than that of Group B, while expression of HO-1 was obviously higher than that of Group B (P < 0.05). The protein content, the ratio of neutrophils in bronchoalveolar lavage fluid (BALF), the content of MDA and the activities of serum NO in Group B were significantly higher than those of Group A (P < 0.01). There was a significant decrease in the level of arterial bicarbonate and partial pressure of oxygen in Group B (P < 0.01). Compared with Group B, these indexes of lung injury were significantly lower while the levels of arterial bicarbonate and partial pressure of oxygen increased significantly in Groups C, D and E (P < 0.05 or P < 0.01). Under light microscope, the pathological changes induced by LPS were significantly attenuated by RPR and hemin.</p><p><b>CONCLUSIONS</b>The high expression of MAPK plays an important role in lipopolysaccharide-induced acute lung injury. Protective effect of RPR on lipopolysaccharide-induced acute lung injury may be related to the inhibition of the abnormal high expression of p38 MAPK/iNOS/HO-1.</p>


Subject(s)
Animals , Male , Rats , Drugs, Chinese Herbal , Pharmacology , Heme Oxygenase-1 , Immunohistochemistry , Lipid Peroxidation , Lipopolysaccharides , Toxicity , Lung , Pathology , Nitric Oxide , Blood , Nitric Oxide Synthase Type II , Paeonia , Phytotherapy , Rats, Wistar , Respiratory Distress Syndrome , Drug Therapy , Metabolism , Pathology , p38 Mitogen-Activated Protein Kinases
SELECTION OF CITATIONS
SEARCH DETAIL